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Abstract 

Previous work has shown that adults in the United States 
selectively use fractions and decimals to model discrete and 
continuous entities, respectively. However, it is unclear whether 
this apparent semantic alignment between the format of rational 
numbers and quantitative ontology is specific to the American 
education system, the English language, or measuring 
conventions (primarily imperial measures). Here we test 
whether similar alignments hold for Korean college students 
who differ from American students in educational background, 
language, and measurement conventions. Across three 
experiments, we found that the alignments found in the United 
States were generally replicated in South Korea. Relative to 
Americans, Korean students showed an overall bias towards 
using continuous representations, perhaps related to their 
exclusive use of the metric measurement system and to 
differences in instructional practice identified in a textbook 
analysis. 

Keywords: Cross-national comparison, semantic alignment, 
continuous and discrete quantities, fractions, decimals 

Introduction 
People’s interpretation and use of arithmetic operations is 
guided by semantic alignment between mathematical and 
real-life situations. The entities in a problem situation evoke 
semantic relations (e.g., tulips and vases evoke the 
functionally asymmetric “contain” relation), which people 
align with analogous mathematical relations (e.g., the non-
commutative division operation, tulips/vases) (Bassok, 
Chase, & Martin, 1998; Guthormsen et al., in press). Rapp, 
Bassok, DeWolf and Holyoak (2015) found that a form of 
semantic alignment guides the use of different formats for 
rational numbers—fractions and decimals. Specifically, 
adults in the United States selectively use fractions and 
decimals to model discrete (i.e., countable) and continuous 
entities, respectively. DeWolf, Bassok and Holyoak (2015) 
also demonstrated that American college students prefer to 
use fractions to represent ratio relations between countable 

sets, and decimals to represent ratio relations between 
continuous quantities.  

The apparent semantic alignment between fractions and 
decimals with discrete and continuous quantities, 
respectively, potentially reflects a basic ontological 
distinction between quantity types (Bassok & Olseth, 1995). 
However, this alignment has so far been demonstrated only 
with American students. Given that the distinction between 
discrete and continuous entities has linguistic and cultural 
correlates (Geary, 1995), it is possible that non-English-
speaking students from a different culture would not align 
distinct mathematical symbols with distinct types of 
quantity.  

Here we report a cross-national investigation of whether 
alignments between rational numbers and discrete and 
continuous entities are found for students in South Korea. 
South Korea provides a particularly interesting comparison 
to the U.S. because the language is structurally different 
from English, and the culture and education system differ 
with respect to several factors that may impact students’ 
conceptions of rational numbers. First, in comparison to the 
U.S., South Korea has excelled in mathematics achievement 
in recent years. According to the 2012 PISA results (OECD, 
2012), South Korea ranked 5th in mathematics achievement 
(compared to the 36th-place standing of the U.S.). There is 
evidence that much of this superior achievement in Asian 
countries can be explained by educational techniques that 
emphasize achieving deeper conceptual understanding and 
mastery before moving on to more complex concepts (Perry, 
2000; Stigler, Fernandez & Yoshia, 1996; Bailey et al., 
2015). The number-naming system is more systematic in 
Korean than English. Also, base-10 units (metric units) are 
used exclusively in South Korea, whereas non-base-10 (e.g., 
imperial) units are widely used in the U.S., and are known 
to affect students’ interpretation and use of fractions and 
decimals (Rapp et al., 2015). 
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Experiment 1 
The purpose of Experiment 1 was to test whether adults in 

South Korea show the same pattern of alignment between 
rational numbers and continuous and countable entities, as 
found in the U.S. To this end, we asked Korean 
undergraduate students to generate word problems that 
contained either fractions or decimals, and examined the 
entities (continuous vs. countable) they described in their 
generated problems.  

Participants 
A total of 71 undergraduate students (male = 25; mean 

age = 21.39) from Yonsei University in South Korea 
participated in the study for course credit. A randomly-
selected half of these participants generated decimal word 
problems and the other half generated fraction word 
problems.  

Design, Materials, and Procedures 
The study was a between-subjects design with one factor: 

number type (fraction vs. decimal). Experimental materials 
were adapted from Experiment 1 of Rapp et al. (2015). 
Translations of the English versions were created by two 
Korean-English bilingual researchers, and then back-
translated into English to ensure accuracy (also in 
Experiments 2-3). Participants were given a single sheet of 
paper with three examples of simple word problems 
provided at the top. Three examples involved one countable 
entity (30 marbles), one continuous entity (5 kilometers), 
and one discretized mass entity (four 2-kilogram bags of 
sugar). The unit “kilogram” was used in place of “pound”. 
All of these examples were presented with whole numbers. 
Participants were then asked to generate two word problems 
with their own numbers. Depending on the condition, they 
were told that numbers in their problems had to be fractions 
(e.g., 1/4, 11/2, 5/2), or decimals (e.g., 0.25, 1.5, 2.5). 
Participants completed the study using paper and pencil. 
There was no time limit.  

Results 
There were a total of 142 problems constructed (70 

decimals, 72 fractions). The constructed problems were 
coded using the classification scheme developed by Rapp et 
al. (2015). Problems were classified as fraction or decimal 
based on the number type that appeared in the problem text. 
Problems were classified as continuous or countable (i.e., 
discrete) based on the entities that appeared in the 
constructed problems. Continuous problems involved 
entities that are referred to linguistically as “mass nouns” 
(e.g., those varying continuously in weight, volume, or 
length), whereas countable problems involved either 
discrete or explicitly discretized entities. Discrete entities 
were sets of individual objects that cannot be broken down 
into natural equal units (e.g., marbles, balloons, or grapes), 
and discretized units were continuous entities that were 
parsed into equal countable parts (e.g., an apple cut into  

 
 
Figure 1. Distribution of countable and continuous 
problems in decimal and fraction problems for students in 
South Korea (left panel) and the U.S. (right panel). The U.S. 
results are from Rapp et al. (2015, Ex. 1). 
 
equal slices, or a rectangle divided into equal squares). 

The left panel of Figure 1 shows the distribution of 
countable and continuous problems in the decimal and 
fraction problems. Overall, students generated more 
continuous problems with decimals than fractions. A chi-
square test confirmed that number type (decimal vs. fraction) 
and continuity (continuous vs. countable) were significantly 
associated, 𝜒2 (1) = 15.42, p < .001. For comparison, the 
right panel shows the results from U.S. undergraduates 
(Experiment 1 of Rapp et al., 2015). Overall, there was a 
consistent pattern of alignment across the two nations in that 
students tend to use decimals to represent continuous 
entities and fractions to represent discrete or countable 
entities. However, Korean students showed an overall bias 
towards using continuous rather than countable quantities. 
In fact, unlike American students, Korean students used 
continuous quantities more often than countable quantities 
when creating fraction word problems.  

Experiment 2 
Experiment 2 tested the alignment of number type with 

quantity by asking students to choose either a continuous or 
a discrete depiction of fractions and decimals, which were 
paired with continuous or discrete entities. 

Participants 
A total of 57 undergraduate students (male = 14; mean 

age = 21.12) from Yonsei University participated in the 
study for course credit.  

Design, Materials, and Procedures 
The study was a 2 (number type: fraction vs. decimal) X 2 

(entity type: continuous vs. countable) within-subjects 
design. There were two trials of each experimental condition, 
resulting in a total of eight trials per participant. 
Experimental materials were constructed by adapting the  
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Figure 2. Options provided to represent continuous (circle) 
and discrete (dots) representations in Experiment 2. In the 
experimental material, the representations were labeled as 
Type 1 and Type 2, respectively, and presented vertically as 
shown. 
 
materials used in Experiment 2 of Rapp et al. (2015). 
Because imperial units (pound, mile) are seldom used in 
Korea, these were replaced with metric units (liter, degree in 
Celsius). 

Each participant saw eight different expressions, each 
including either a fraction or a decimal and either a 
countable (pen, sandwich, book, banana) or continuous 
(kilometer, liter, degree in Celsius, kilogram) entity type. 
Four fractions were used (3/4, 5/8, 4/9, 2/7), and their 
magnitude-equivalent decimals (.75, .63, .44, .29). For 
example, a participant might see “3/4 kilometer” or “.75 
sandwich.” Assignments of entity type and number type 
were counterbalanced so that half of the participants 
received a fraction with a particular entity (e.g., 3/4 
sandwich) and half received the equivalent decimal with 
that same entity (e.g., .75 sandwich). Thus, each participant 
saw eight of the 16 possible pairings of number and entity 
type.  

The dependent variable was whether participants selected 
a continuous circle representation or a discrete dots 
representation for the number type-entity type expressions 
(see Figure 2). Critically, the representation options were 
the same for all of the statements. Both of the 
representations depicted the value of 1/2 (.50), which was 
not used in any of the fractions or decimals given in the 
statements. The choice of representation type thus could 
only be guided by its abstract form (continuous or discrete), 
rather than by matches of specific values. Participants were 
given eight expressions that paired number type and entity 
type. For each expression participants were instructed to 
choose which type of diagram (circle or dots) they would 
prefer to use to represent it.  

Results 
The left panel of Figure 3 shows the percentage of total 

times the continuous representation (circle) versus discrete 
representation (dots) was chosen for a given combination of 
entity type and number type. Collapsing across entity type, 
for decimal expressions participants selected the continuous 
representation (circle) 64% of the time, whereas for fraction 

 
 
Figure 3. Percentage response selection by number type for 
trials with continuous entities and countable entities in 
Experiment 2 between South Korea (left panel) and the U.S. 
(right panel). The U.S. results are from Rapp et al. (2015, 
Ex. 2, metric units only). 
 
expressions participants chose the continuous representation 
(circle) 46% of the time.  

A 2 x 2 within-subjects ANOVA was performed on data 
coded as the proportion of trials on which the continuous 
representation (circle) was selected. For simplicity, we 
report the preference for continuous only. There was a 
significant main effect of number type, F(1, 56) = 8.84, p 
= .004, indicating that the continuous representation was 
selected more frequently for decimals than for fractions. 
There was no main effect of entity type (F < 1), nor any 
reliable interaction effect between number and entity type, 
F(1, 56) = 1.55,  p = .219. 

For comparison, the right panel of Figure 3 shows the 
comparable data from American students (based solely on 
items using metric units, to maximize compatibility with the 
items used in Korea.) As in Experiment 1, Korean students 
showed the same basic pattern of alignments as had been 
found for American students. However, Korean students 
chose continuous versus countable representations equally 
often when representing fractions, whereas the U.S. students 
chose countable representation more often than continuous 
representation. Korean students thus showed an overall 
preference for continuous representations. 

Experiment 3 
Experiment 2 showed that participants’ preferences for 

representation types varied depending on the type of rational 
number used. In Experiment 3 we tested for alignment in the 
opposite direction. College students were asked to choose 
either a fraction or decimal for different types of displays 
that depicted ratio relations. Experimental materials were 
adapted from Experiment 1 of DeWolf et al. (2015). 
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Participants 
A total of 60 undergraduate students (male = 18; mean 

age = 21.08) from Yonsei University participated in the 
study for course credit. Participants were randomly assigned 
in equal numbers to two between-subjects conditions (part-
to-part vs. part-to-whole ratio; see below). 

Design, Materials, and Procedures 
The study was a 2 (relation type: part-to-part vs. part-to-

whole ratios) X 3 (display type: continuous, discretized, 
discrete) design, where relation type was a between-subjects 
factor, and display type was a within-subjects factor. A part-
to-part ratio (PPR) is the relation between the size of the two 
subsets of a whole, whereas a part-to-whole ratio (PWR) is 
the relation between the size of one subset and the whole. 

Figure 4 depicts examples of the three display types. The 
discrete items were displays of circles, squares, stars, 
crosses, trapezoids, and cloud-like shapes. The continuous 
items were displays of rectangles that could differ in width, 
height and orientation (vertical or horizontal). The 
discretized items were identical to the continuous displays 
except that the rectangles were divided into equal-sized 
units by dark lines. For the stimuli used in test trials, red and 
green were used to demarcate the two different subsets. The 
displays varied which color represented the larger subset 
versus the smaller subset. 

Participants were given instructions for either the part-to-
part ratio (PPR) or part-to-whole ratios (PWR) condition.  
They were given a Korean translation of the following 
instructions for the PPR condition: “In this experiment, you 
will see displays that show various part to part relations.  In 
the display below [display with 1 orange circle and 2 blue 
crosses] this would be the number of orange circles relative 
to the number of blue crosses. Such relations can be 
represented with fractions (e.g., 3/4) or with decimals 
(e.g., .75). For each display your task is to choose which 
notation is a better representation of the depicted relation—a 
fraction or a decimal.  Note that the specific values (i.e., 3/4 
and .75) are just examples and do not match the values in 
the displays.”  For the PWR condition, the instructions were 
identical except for the description of the relations. In this 
condition the part-to-whole relation was defined using the 
example of the number of orange circles relative to the total 
number of blue crosses and orange circles. The relation type 
(PPR vs. PWR) was manipulated between subjects; thus 
participants in the PPR condition were only told about PPRs 
and participants in the PWR condition were only told about 
PWRs. Participants were shown examples of the continuous 
and discretized displays, in addition to the discrete display, 
and were told that displays could appear in any of those 
formats.  

The task was simply to decide whether the relationship 
should be represented with a fraction (3/4) or a decimal 
(.75). In order to assess this preference on a conceptual level, 
the specific fraction and decimal shown to participants (3/4 
and .75) were held constant across all trials, and never 
matched the number of items in the pictures. Thus, no  

Figure 4. Examples of continuous, discretized and discrete 
displays used in Experiment 3. 

 
mathematical task needed to be performed. There was 
therefore no requirement for accuracy, nor was any speed 
pressure imposed. Since the quantity shown in a display 
never matched the particular fraction and decimal values 
provided as response options, there was no real need to even 
determine the specific value represented in a display. The 
paradigm of Experiment 3 was thus intended to investigate 
participants’ conceptual representations for fractions and 
decimals, in a situation in which mathematical procedures 
were not required. 

Stimuli were displayed on a computer screen and 
participant responses were recorded. Participants were given 
the instructions described above for either the PPR 
condition or the PWR condition. Participants were told to 
select the z key for decimals and the m key for fractions.  
Participants completed 60 test trials (20 for each display 
type). A fixation cross was displayed for 600 ms between 
each trial. Display types were shown in a different random 
order for every participant. All participants were tested in a 
laboratory.  

Results 
Because participants were forced to choose either a 

fraction or a decimal for each trial, the preference for each is 
complementary.  For simplicity, we report the preference for 
fractions. The proportion of trials in which participants 
selected the fraction notation was computed for each display 
type for each participant.  The left panel of Figure 5 shows 
the proportion of trials that participants chose either 
fractions or decimals for each display. A 2 (relation type: 
PPR vs. PWR) X 3 (display type: discrete, discretized, 
continuous) ANOVA was performed to assess differences in 
notation preference. There was a significant main effect of 
display type, F(2, 116) = 30.88, p < .001. Planned 
comparisons showed that preference for fractions was 
significantly greater for discretized displays than discrete 
displays, t(59) = 2.23, p = .029, which in turn was greater 
than continuous displays, t(59) = 4.94, p < .001. There was 
no interaction between relation type and display type, F(2, 
116) = 1.17, p = .314, and no main effect of relation type, F 
< 1. 

Continuous 
 
 
 
Discretized 
 
 
 
Discrete 



 

Figure 5. Percentage response selection for each display 
type in which either a fraction or decimal were chosen in 
Experiment 3 between South Korea (left panel) and the U.S. 
(right panel). The U.S. results are from DeWolf et al. (2015, 
Ex. 1). 

 
These results reveal that Korean students preferred to 

represent both PPR and PWR ratio relationships with 
fractions when a display showed a partition of countable 
entities, but with decimals when the display showed a 
partition of continuous mass quantities. Participants picked 
the number format that provided the best conceptual match 
to either continuous or discrete displays. 

No mathematical task needed to be performed, and the 
specific quantities depicted in the displays did not match the 
numerical values of the fractions and decimals provided as 
choice options; hence our findings demonstrate that the 
preferential association of display types (discrete or 
continuous) and rational number formats (fractions or 
decimals) has a conceptual basis for Korean as well as 
American students (DeWolf et al., 2015). This result closely 
aligns with the results of Experiments 1-2, in that college-
educated adults show a preference for using continuous 
displays to represent decimals and countable displays to 
represent fractions. The patterns of results were consistent 
between Korea and the U.S. Experiment 3 thus provides 
strong support for the hypothesis that the natural alignment 
of different symbolic notations with different quantity types 
has a conceptual basis.   

Discussion 
The results across the three experiments conducted in 

Korea revealed a pattern very similar to that obtained using 
adults in the United States.  Although direct statistical 
comparisons between the two countries are not possible 
because the experiments were done separately, the patterns 
of results across the two parallel sets of studies are in broad 
qualitative agreement. Decimals were typically used to 
represent continuous entities, whereas fractions were more 
likely to represent discrete than continuous entities. 

Continuity versus discreteness is a basic ontological 
distinction that affects children’s understanding of integers 
through counting of discrete entities, and (later on) through 
measurement of continuous entities that have been parsed 
into discrete units (e.g., Gelman, 1993; Gelman, 2006; Mix, 
Huttenlocher & Levine, 2002a, 2002b; Nunes, Light & 
Mason, 1993; Rips, Bloomfield & Asmuth, 2008). The 
distinction between continuity and discreteness is preserved 
throughout the mathematical curriculum. As in the initial 
cases of counting and measurement, discrete concepts are 
always taught before their continuous counterparts (e.g., 
first arithmetic progressions, then linear functions).  

The two symbolic notations of rational numbers, together 
with their respective alignments to discrete and continuous 
entities, are differentially suited for different reasoning tasks. 
DeWolf et al. (2015) found that fractions allow people to 
better represent bipartite relations between discrete sets than 
do decimals. This difference arises because fractions 
maintain the mapping of distinct countable sets onto the 
numerator and the denominator, whereas decimals obscure 
this mapping. At the same time, decimals afford direct 
mapping onto a mental number line, and therefore allow for 
easier magnitude assessment than do fractions (DeWolf et 
al., 2014; Iuculano & Butterworth, 2011).  

Although the overall patterns of results in our experiments 
were consistent between the U.S. and South Korea, Korean 
students showed a general bias towards using continuous 
entities and representations in Experiments 1-2. One 
possible explanation is use of the metric measurement 
system in Korea. In a preliminary textbook analysis, we 
found a pattern qualitatively similar to that observed in 
Experiment 1. Unlike the U.S. (Rapp et al., 2015), Korean 
textbooks used continuous entities more often than discrete 
entities for both fractions and decimals (although the 
preference for continuous entities is reduced for fractions 
relative to decimals).  The performance of college students 
in Experiment 1, and the correspondence between their 
performance and textbook examples, may reflect the early 
exposure of Korean students to this alignment in the 
textbook examples.  

Despite this secondary difference between the patterns 
observed in the U.S. and Korea, the present study provides 
strong evidence that a natural alignment holds between 
entity type and rational numbers. This alignment cannot be 
attributed to the specifics of education, language, and 
measurement units, which differ greatly between the United 
States and South Korea. Given that we know students are 
particularly prone to misconceptions with rational numbers 
(Siegler et al., 2013; Ni & Zhou, 2005; Staflyidou & 
Vosniadou, 2004; Stigler, Givvin & Thompson, 2010), 
making use of this natural alignment may help students to 
use their knowledge of entities in the real world to bootstrap 
their knowledge of rational numbers.  Interestingly, despite 
the prevalence of this alignment in textbooks across many 
grade levels, textbooks never actually address it explicitly.  
The alignment seems to be implicit, and is not explicitly 
taught even for adults. Teaching with this alignment in mind, 
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and even explicitly using it, may provide a useful stepping-
stone for children learning rational numbers. In addition, 
having students engage in tasks in which they need to 
actively parse a continuous representation, or conversely, 
sum over a discrete representation to align it with a decimal 
value, may provide a useful tool for bolstering 
understanding of the relation between the representations of 
entities and the rational numbers themselves. 

More generally, the present study illustrates the 
importance of cross-national and cross-cultural research in 
the field of higher cognition (cf. Richland, Zur & Holyoak, 
2007). It is critical to distinguish between phenomena that 
are specific to particular educational practices in specific 
contexts from those that reflect the fundamental 
representational capacities of the human mind. The 
methodological approach of identifying those aspects of 
cognitive performance that are the same or different across 
populations varying in culture, language, and educational 
practices is especially informative in answering these types 
of basic questions.  
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